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Abstract: In the collinear factorization of the form factor for the transition γ∗π0 → γ

the hard part contains double log terms as ln2 x with x as the momentum fraction of

partons from 0 to 1. A simple exponentiation for resummation leads to divergent results.

We study the resummation of these ln2 x terms. We show that the ln2 x terms come

partly from the light-cone wave function(LCWF) and partly from the form factor. We

introduce a jet factor to factorize the ln2 x term in the form factor. To handel the ln2 x

terms from the LCWF we introduce a nonstandard light-cone wave function(NLCWF)

with the gauge links off the light-cone direction. An interesting relation between two wave

function is found. With the introduced NLCWF and the jet factor we can re-factorize the

form factor and obtain a new hard part which does not contain terms with ln2 x. Beside

the renormalization scale µ the introduced NLCWF and jet factor have extra scales to

characterize their x-behaviors. Using the evolutions of the extra scales and the relation we

can do the resummation perturbatively in sense that the LCWF is the only nonpertubative

object in the resumed formula. Our results with some models of LCWF show that there

is a significant difference between numerical predictions with the resummation and that

without the resummation, and the resummed predictions can describe the experimental

data.
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1. Introduction

Predictions with perturbative QCD for an exclusive process can be made if it contains

short-distance effects beside long-distance effects. In order to use the perturbative theory

of QCD one needs to separate or factorize long distance and short-distance effects. Only

the latter, which are characterized by a large energy scale denoted generically as Q, can be

studied with perturbative QCD. It has been proposed long time ago that such a process

can be studied by an expansion of the amplitude in 1/Q, corresponding to an expansion

of QCD operators in twist [1, 2]. The leading term can be factorized as a convolution

of a hard part and light-cone wave functions of hadrons. The light-cone wave functions

are defined with QCD operators, and the hard part describes hard scattering of partons

at short distances. The hard part can be safely calculated with perturbative QCD in the

sense that it does not contain any infrared(I.R.)- and collinear divergences. This is the

so-called collinear factorization. In this factorization the transverse momenta of partons

in parent hadrons are also expanded in the hard scattering part and they are neglected at

leading twist.

Although the hard part does not contain any of I.R- and collinear singularities, as an

perturbative expansion it contains large logarithms at higher orders of αs. These large

logarithms are dangerous and can spoil the expansion in the sense that the expansion does

not converge. A resummation of large logarithms is often needed to have a reliable predic-

tion. In this paper we study the resummation in the process γ∗π0 → γ. Theoretically, the

process has been studied with QCD factorization extensively [3 – 9]. Experimentally it has
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been studied too [10]. With the collinear factorization the form factor F (Q) characterizing

the process can be written as

F (Q) ∼ φ ⊗ H

{

1 +
Λ2

Q2

}

. (1.1)

In the above φ is the light-cone wave function(LCWF) of π0, H is the hard part, and Q2

is the virtuality of the virtual photon. The correction to the factorized form is power-

suppressed and is proportional to Λ2/Q2. Λ is any possible soft scale characterizing non-

perturbative scale, like ΛQCD, the mass of π etc.. This scale is about several hundreds

MeV. In [8] the hard part in the collinear factorization has been calculated at one-loop, its

two-loop result can be found in [9]. At one-loop level one finds that H contains a double

log αs ln2 x, where x is the momentum fraction carried by a parton with 0 ≤ x ≤ 1. It is

expected that at n-loop level, it will contain αn
s ln2n x. Those double log terms will become

divergent when x is approaching to zero and can spoil the perturbative expansion of H.

Although the double log terms are integrable with x in the convolution and give finite

contributions, but they are significant corrections. The purpose of our study is to resum

those double log terms.

In order to resum those double log terms we need to understand their origin. Given

the factorized form in the above, H will receive contributions from the form factor and the

LCWF. When we use a finite quark mass to regularize the collinear singularities, we can

show that the log terms come from the form factor and the LCWF. These terms can be re-

factorized by introducing a jet factor and a nonstandard light-cone wave function(NLCWF),

where the jet factor contains the double log from the form factor and the NLCWF doe not

have double log. In introducing these two objects in the re-factorization, two extra scales,

which will be explained later, are introduced. One of them is related to the ln2 x term from

LCWF, while another is related to ln2 x in the form factor. The new hard part H̃ from

the re-factorization will not contain ln2 x. With evolution equations of these scales we are

able to resum the ln2 x terms. Our approach is similar to the threshold resummation in

inclusive processes studied in [11]. There exists an interesting relation between the two

wave functions. In our approach, after the resummation of ln2 x, only the LCWF appears

in the form factor as a nonperturbative object, other quantities can be calculated with

perturbative QCD. With the knowledge of the LCWF we are able to give numerical results

and to make a comparison with experiment.

It should be noted that it is possible to resum the large log terms in exclusive pro-

cesses by taking transverse momenta of partons into account [12, 13]. By introducing

transverse-momentum-dependent(TMD) light-cone wave-functions one can make TMD or

kt factorization in terms of the TMD light-cone wave functions. However, the consistence

of the factorization needs to be carefully checked beyond tree-level. Recently, this has been

studied in a series of papers [14, 15], where a consistent definition of TMD light-cone wave

functions is proposed and the TMD factorization is examined beyond tree-level for some

simple cases. However, unlike LCWF’s there is little knowledge about TMD light-cone

wave functions. Therefore, it may be difficult to give detailed predictions and to compare

with experiment.
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Our paper is organized as the following: In section 2 we introduce our notations and

explain the origin of ln2 x. In section 3 we introduce NLCWF and present a one-loop study

of the NLCWF. We also show that there is a perturbative relation between LCWF and

NLCWF. In section 4 we introduce our jet factor and derive the factorization formula with

the jet factor and NLCWF. In section 5 we give our resummation formula. We present our

numerical results in section 6, where a comparison with experiment is also given. section

7 is our conclusion.

2. Notations and the origin of ln
2
x

We consider the process:

π0 + γ∗ → γ (2.1)

where π0 carries the momentum P and the real photon momentum p. We use the light-

cone coordinate system, in which a vector aµ is expressed as aµ = (a+, a−,~a⊥) = ((a0 +

a3)/
√

2, (a0 − a3)/
√

2, a1, a2) and a2
⊥ = (a1)2 + (a2)2. We take a frame in which the

momentum P and p are:

Pµ = (P+, P−, 0, 0), pµ = (0, p−, 0, 0). (2.2)

We will consider the case that the virtual photon has the large negative virtuality

q2 = (P − p)2 = −2P+p− = −Q2. The process can be described by matrix element

〈γ(p, ǫ∗)|Jµ
e.m.|π0(P )〉, which is parameterized with the form factor F (Q2):

〈γ(p, ǫ∗)|Jµ
e.m.|π0(P )〉 = ie2εµνρσǫ∗νPρpσF (Q2). (2.3)

e is the charge of proton, i.e., α = e2/(4π).

In the collinear factorization the form factor can be factorized as

F (Q2) =
Q2

u − Q2
d√

2

1

Q2

∫ 1

0
dxφ(x, µ)H(x,Q, µ)

[

1 + O(
Λ2

Q2
)

]

, (2.4)

where φ is the LCWF of π0, H is a perturbative function or a hard part. Qu and Qd are

the electric charge fraction of u and d quark in unit of e, respectively. φ is defined with

QCD operators:

φ(x, µ) =

∫

dz−

2π
eik+z−〈0|q̄(0)L†

n(∞, 0)γ+γ5Ln(∞, z−n)q(z−n)|π0(P )〉, (2.5)

where the gauge link is defined along the light-cone direction nµ = (0, 1, 0, 0) as:

Ln(∞, z) = P exp

(

−igs

∫ ∞

0
dλn · G(λn + z)

)

. (2.6)

To find the hard part H, we replace the hadronic state with the partonic state:

|π0(P )〉 → |q(kq), q̄(kq̄)〉, kµ
q = (k+

q , k−
q , 0, 0), kµ

q̄ = (k+
q̄ , k−

q̄ , 0, 0)

k2
q = k2

q̄ = m2, k+
q = x0P

+, k+
q̄ = (1 − x0)P

+ = x̄0P
+, (2.7)
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where we use a small but finite quark mass m to regularize collinear singularities. The

form factor calculated with the partonic state will in general contain collinear singularities.

The LCWF calculated with the partonic state will also have collinear singularities. If the

collinear factorization holds, the singularities of the form factor and the LCWF will be the

same so that the hard part H will not contain any collinear- and I.R. singularities. Here

we examine this explicitly and show the origin of ln2 x.

With the partonic state, the LCWF at tree level reads:

φ(0)(x, µ) = δ(x − x0)φ0, φ0 = v̄(kq̄)γ
+γ5u(kq)/P

+. (2.8)

At the leading order, the form factor receives contributions from diagrams in figure 1. It

is straightforward to obtain the tree-level result from figure 1:

F (Q2)|1a = φ0
1

3
√

2Q2x0

, F (Q2)|1b = φ0
1

3
√

2Q2(1 − x0)
= φ0

1

3
√

2Q2x̄0

. (2.9)

We will always use the notation ū = 1 − u. Combining it with the tree-level result of the

LCWF, we can obtain a factorized form for the form factor at tree-level:

F (Q2) =
1

3
√

2Q2

∫

dxφ(x, µ)

[

1

x
+

1

x̄

]

, H(0)(x,Q, µ) =
1

x
+

1

x̄
. (2.10)

At one-loop level, there are 12 Feynman diagrams, 6 of them are given in figure 2.

The other 6 diagrams are obtained from those in figure 2 by reversing the direction of

the quark line, i.e., through charge conjugation. The diagrams in figure 2 represent the

correction to figure1a, and the other 6 diagrams for the correction to figure 1b. Two

corrections are related each other by charge conjugation. Hence we will need to study how

the contributions from figure 2 can be factorized.

The contributions except that of figure 2a can be calculated in a straightforward way.

We give gluons a small mass λ to regularize I.R. singularities. The results are:

F (Q2)|2e = F (Q2)|2f = F (Q2)|1a · αs

6π

[

− ln
µ2

m2
− 2 ln

λ2

m2
− 4

]

,

F (Q2)|2d = F (Q2)|1a · −αs

3π

[

ln
µ2

Q2
− ln x0 + 1

]

,

F (Q2)|2b = F (Q2)|1a · 2αs

3π

[

1

2
ln

µ2

Q2
+ ln

Q2

m2
+

1

2
ln x0

]

,

F (Q2)|2c = F (Q2)|1a · 2αs

3π

{

1

x̄0

[

−1

2
ln2 x0 + 2 ln x̄0 ln x0 + ln

Q2

m2
ln x0 −

π2

3
+ 2Li2(x0)

]

+
1

2
ln

µ2

Q2
− ln

m2

Q2
− 2 + x0

2x̄0
ln x0

}

. (2.11)

These results can also be found in [14]. From the above, the ln2 x term comes only from

figure 2c. The origin of this ln2 x is the following: The quark propagator connecting the

vertex which emits the real photon carries the momentum (xP+,−p−, 0, 0) + O(m2). If x

becomes small and goes to zero, the momentum becomes light-cone-like. If the momentum

– 4 –
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(a) (b)
Figure 1: Feynman diagrams of tree-level contributions to the partonic scattering. The black dot

denotes the insertion of the electric current operator corresponding to the virtual photon.

(a) (b) () (d) (e) (f)
Figure 2: Feynman diagrams of the one-loop corrections to figure 1a.

a b  d
Figure 3: Feynman diagrams of the one-loop corrections to LCWF. The double line stands for the

gauge link.

of the exchanged gluon is in the region collinear to the −-direction, after the loop integration

a collinear singularity regularized by the small x appears. However, the region also overlaps

with the infrared region where all components of the momentum are at order of xQ. This

region generates an I.R. singularity which is also regularized by the small x. Therefore,

the contribution from figure 2c contains ln2 x, one comes from the collinear singularity and

another from the infrared singularity. We will show later that the dominant contribution

containing ln2 x in these regions can be obtained by the eikonal approximation and can

be factorized by using the method suggested in [16]. It has also been suggested by using

a jet factor to absorb the ln2 x term [17]. With a similar analysis one can show that the

contribution from figure 2b does not contain the collinear singularity related to the −-

direction when x becomes small. It contains only the infrared singularity regularized by x.

Hence it does not contain ln2 x as shown explicitly in eq. (2.11).

The one-loop correction of the LCWF is given by some of diagrams in figure 3 and

figure 4. The diagrams with the gluon-exchange between gauge links give no contribution

here because n2 = 0. The one-loop part of LCWF is the sum:

φ(1)(x, µ) = φ(x, µ)|3a +φ(x, µ)|3b+φ(x, µ)|3c+φ(x, µ)|4a +φ(x, µ)|4c+φ(x, µ)|4d+φ(x, µ)|4f ,

(2.12)
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a b 

d e f
Figure 4: Feynman diagrams of the one-loop corrections to LCWF. The double line stands for the

gauge link.

The one-loop results can be found in [14]. They are:

φ(x, µ)|4a = φ(x, µ)|4d =
αs

6π

[

− ln
µ2

m2
q

+ 2 ln
m2

q

λ2
− 4

]

φ0,

φ(x, µ)|3c + φ(x, µ)|4f = −2αs

3π
φ0θ(x − x0)

[

x̄

x̄0(x − x0)
ln

m2
q(x − x0)

2

µ2x̄2
0

]

+

,

φ(x, µ)|3b + φ(x, µ)|4c =
2αs

3π
φ0θ(x0 − x)

[

x

x0(x − x0)
ln

m2
q(x − x0)

2

µ2x2
0

]

+

. (2.13)

With the above results the one-loop contribution of H can be determined as:

H(1)(x0, Q, µ) = F (1)(Q) −
∫ 1

0
dxφ(1)(x, µ)H(0)(x,Q, µ). (2.14)

It is obvious that the contributions from figure 2e and figure 2f are already contained in

the contribution of figure 4a and figure 4d of the LCWF, respectively. The contribution

from figure 3a has a complicated expression. However, for the purpose of the factorization,

we only need the contribution at the leading power of Q2. We have the result for the

combination:

Q2F (Q2)|2a − φ|3a ⊗ H
(0)
1a = −2αs

3π

1

x̄
ln x

[

ln
Q2

µ2
− 1 +

1

2
ln x

]

+ O(Q−2). (2.15)

The convolution of other one-loop parts of LCWF reads:

∫ 1

0

dx

x
φ(x, µ)|3c+4f =

2αs

3π

1

x0x̄0

{

− ln2 x0 + 2 ln x̄0 ln x0 + ln x0 ln
µ2

m2
+ 2Li2(x0)

−π2

3
+ x̄0 ln

µ2

m2
+ 2x̄0

}

,

∫ 1

0

dx

x
φ(x, µ)|3b+4c =

2αs

3πx0

[

ln
µ2

m2
+ 2

]

. (2.16)
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We note that the result in the first line can be used to subtract collinear singularities in

figure 2c and that in the second line can be used for figure 2b. With these results one can

extract the contributions of H from figure 2c and figure 2b:

H(1)(x,Q, µ)|2c =
αs

3πx

{

1

x̄

[

ln2 x − 2 ln x ln
µ2

Q2
− (2 + x) ln x

]

− ln
µ2

Q2
− 4

}

,

H(1)(x,Q, µ)|2b =
αs

3πx

{

− ln
µ2

Q2
+ ln x − 4

}

. (2.17)

Finally the one-loop part of H can be given:

H(x,Q, µ) =
1

x
+

αs

3πx

[

ln2 x − x

x̄
ln x − 9 + ln

Q2

µ2
(3 + 2 ln x)

]

+ (x → x̄) + O(α2
s) (2.18)

From eq. (2.16) we can see that the LCWF gives also a contribution with ln2 x to H.

The origin of this double log is that we use the light-cone gauge link. With the light-cone

gauge link the contribution from figure 3c and figure 4f has a light-cone singularity beside a

collinear singularity. The light-cone singularity is canceled in the sum. If we use gauge links

with non light-cone vectors, the light-cone singularity will be regularized by the deviation

of the vectors from the light-cone vector n.

The obtained H behaves like xH ∼ 1+αs ln2 x/(3π) when x goes to zero. A resumma-

tion with a simple exponentiation does not work because of the +-sign in the front of the

ln2 x term. Inspecting the one-loop part H one may chose µ as µ2 =
√

xQ2 to kill the ln2 x

term. However, for small enough x the scale becomes so small that perturbative QCD can

not be used. It seems that one needs extra nonperturbative objects beside the LCWF to

complete the resummation. We will show in our work that the resummation can be done

without those extra nonperturbative objects.

Before ending the section we would like to discuss the case if the dimensional reg-

ularization is used to regularize collinear singularities. In this case, the origin of ln2 x is

different than that with a quark mass. However the hard part is the same and it is expected

that quantities which are free from collinear singularities will not depend how the collinear

singularities are regularized.

3. Nonstandard light cone wave function

As discussed before, one can use non-light cone gauge links to define nonstandard light

cone wave functions. A possible definition is a straightforward generalization of eq. (6):

φ+(x, ζ, µ) ∼
∫

dz−

2π
eik+z−〈0|q̄(0)L†

u(∞, 0)γ+γ5Lu(∞, z−n)q(z−n)|π0(P )〉, (3.1)

where the gauge link is

Lu(∞, z) = P exp

(

−igs

∫ ∞

0
dλu · G(λu + z)

)

, uµ = (u+, u−, 0, 0). (3.2)

– 7 –
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a b  d
Figure 5: The one-loop contribution to products S of gauge links.

a b 

d e f
Figure 6: The one-loop contribution to products S of gauge links.

This definition is gauge invariant. The defined NLCWF depends on an extra parameter

ζ2 =
2u−(P+)2

u+
≈ 4(u · P )2

u2
. (3.3)

We will take the limit u− >> u+ or ζ → ∞. The limit ζ → ∞ should be understood as

that we do not take the contributions proportional to any positive power of u+/u− into

account. It has no light-cone singularities as we will show through our one-loop result.

At tree-level the NLCWF is the same as the LCWF. At one-loop level, there are con-

tributions given by all diagrams given in figure 3 and figure 4. However, the contributions

from interactions between gauge links will cause some problems, especially the contribution

from figure 3d. It should be noted that the contributions from interactions between gauge

links, i.e., those from figure 3d, figure 4b and figure 3e, have no corresponding contributions

in the form factor. A direct calculation shows that the contribution from figure 3d is not

zero when x = 0 or x = 1. When this contribution convoluted with the tree-level hard

part H(0) it will lead to divergences. Therefore these contributions need to be subtracted

and a modification of the above definition is needed. Since only interactions between gauge

links are involved in these contributions, one can consider to use products of gauge links

to subtract them.

We consider the following products of gauge links:

S(z−, u, v) =
1

Nc
Tr〈0|L†

v(0,−∞)L†
u(∞, 0)Lu(∞, z−n)Lv(z

−n,−∞)|0〉,

S(z−, u, n) =
1

Nc
Tr〈0|L†

n(0,−∞)L†
u(∞, 0)Lu(∞, z−n)Ln(z−n,−∞)|0〉,

S(z−, n, v) =
1

Nc
Tr〈0|L†

v(0,−∞)L†
n(∞, 0)Ln(∞, z−n)Lv(z

−n,−∞)|0〉. (3.4)

– 8 –
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The vector v is taken as vµ = (v+, v−, 0, 0) with v+ >> v−. The fourier transformed S is:

S(q+, u, v) =

∫

dz−

2π
eiq+z−S(z−, u, v). (3.5)

At tree-level all S’s are 1 in the z−-space or δ(q+) in the q+-space. At one-loop level, they

receive corrections from figure 5 and figure 6. It is interesting to note that there are certain

relations between contributions of the three gauge link products. E.g., the contribution

from figure 5b to S(q+, u, v) is:

S(q+, u, v)|5b = i
4

3
g2
s

∫

d4k

(2π)4
δ(k+ + q+)

u · v
v · k − i0

· 1

u · k − i0
· 1

k2 − λ2 + i0
. (3.6)

It is interesting to note that under the limit v+ >> v− and u− >> u+:

u · v
(v · k − i0)(u · k − i0)

≈ 1

n · k

[

n · v
v · k − i0

− n · u
u · k − i0

]

, (3.7)

where the first term corresponds to the contribution from figure 5b to S(q+, n, v), and the

second term corresponds to that to S(q+, u, n), Hence we have:

S(q+, u, v)|5b = S(q+, n, v)|5b − S(q+, u, n)|5b. (3.8)

The same result also holds for figure 5c and figure 6e and figure 6f. With this observation

we define the soft factor:

S̃(z−, ζu) =
1

2

[

1 + S(z−, u, v) − S(z−, n, v) + S(z−, u, n)
]

,

S̃(q+, ζu) = P+

∫

dz−

2π
eiq+z−S̃(z−, ζu). (3.9)

With above results we have up to one-loop level:

S̃((x − x0)P
+, ζu) = 1 +

2αs

3π

{(

1

x − x0

)

+

[θ(x0 − x) − θ(x − x0)] (3.10)

−1

2
δ(x − x0)

[

ln
ζ2
u(1 − x0)

2

µ2
+ ln

ζ2
ux2

0

µ2

]}

+ O(α2
s).

The soft factor S̃ only receives contributions from figure 5d and from the self-interaction

of a gauge link, i.e., from figure 6a, figure 6b, figure 6d and figure 6e. These contributions

are the same of those from figure 3d, figure 4b and figure 4c to the NLCWF, respectively.

Therefore we can use this fact to subtract the contributions to φ+ from figure 3d, figure

4b and figure 4e. It should be noted that the soft factor used here may be not unique.

This non-uniqueness may be fixed through a study of higher orders and will not affect our

one-loop results in this work. Also in the soft factor S̃ one can take the limit v → l so that

S̃ does not depend on v.

We modify the definition of the NLCWF as:

φ̃+(x, ζ, µ) =

∫

dz−

2π
eik+z− 〈0|q̄(0)L†

u(∞, 0)γ+γ5Lu(∞, z−n)q(z−n)|π0(P )〉
S̃(z−, ζu)

. (3.11)
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Its individual one-loop contributions are

φ̃+(x, ζ)|3b + φ+(x, ζ)|4c =
2αs

3π
φ0

{

θ(x0 − x)

(

− x

x0
· 1

x − x0

)

+

ln
ζ2x2

0

m2
q

+δ(x − x0)

[

1

2
ln

µ2

ζ2x2
0

− π2

6
+ 1

]}

φ0,

φ̃+(x, ζ)|3c + φ+(x, ζ)|4f =
2αs

3π
φ0

{

θ(x − x0)

(

x̄

x̄0
· 1

x − x0

)

+

ln
ζ2x̄2

0

m2
q

(3.12)

+δ(x − x0)

[

1

2
ln

µ2

ζ2x̄2
0

− π2

6
+ 1

]}

φ0,

it should be noted that there is no term like (ln(x − x0)/(x − x0))+ in comparison with

φ+(x, µ), hence it will not lead to any term with ln2 x when convoluted with H(0). The

one loop result for φ̃ reads:

φ̃
(1)
+ (x, ζ, µ) =

2αs

3π

{

θ(x0 − x)

(

− x

x0
· 1

x − x0

)

+

ln
ζ2x2

0

m2
q

+θ(x − x0)

(

x̄

x̄0
· 1

x − x0

)

+

ln
ζ2x̄2

0

m2
q

+δ(x − x0)

[

1

2
ln

µ2

ζ2x2
0

+
1

2
ln

µ2

ζ2x̄2
0

− π2

3
+ 2

] }

φ0 + figure1a

+
αs

3π
δ(x − x0)

[

− ln
µ2

m2
q

+ 2 ln
m2

q

λ2
− 4

]

φ0, (3.13)

the last line is from external-leg corrections.

There is an interesting relation between LCWF and NLCWF. It reads:

φ̃+(x, ζ, µ) =

∫ 1

0
dyC(x, y, ζ, µ)φ(y, µ), (3.14)

where the function C can be calculated with perturbative QCD and does not contain any

soft divergence. From our results we have:

C(x, y, ζ, b, µ) = δ(x − y) +
2αs(µ)

3π

{

θ(x − y)

[

1

x − y

(

x̄

ȳ
ln

ζ2(x − y)2

µ2

)]

+

(3.15)

−θ(y − x)

[

1

x − y

(

x

y
ln

ζ2(x − y)2

µ2

)]

+

+δ(x − y)

[

1

2
ln

µ2

ζ2y2
+

1

2
ln

µ2

ζ2ȳ2
− π2

3
+ 2

]}

+ O(α2
s).

With the function we define another function which will be useful later:

Ĉ(x, ζ, µ)

x
=

∫ 1

0

dy

y
C(y, x, ζ, µ). (3.16)
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which is just the convolution of C with the tree-level hard part from figure 1a. Again the

function has a perturbative expansion:

Ĉ(x, ζ, µ) = 1 − 2αs(µ)

3π

{

1

x̄

[

− ln2 x + ln x ln
µ2

ζ2
+ 2Li2(x) − π2

3

]

(3.17)

+
1

2
ln

µ2

ζ2x2
+

1

2
ln

µ2

ζ2x̄2
+

π2

3
+ 2

}

+ O(α2
s),

4. The jet factor and re-factorization

After having studied the double log in LCWF, we need now to study how to factorize the

double log ln2 x0 from the form factor from figure 2c. As discussed before, the double log

comes from the loop-momentum region where all components of the momentum carried

by the gluon are at order of x0Q. One can use the eikonal approximation to expand the

contribution in x0 before the loop integration to obtain the dominant contribution. After

some algebra we have:

〈γ(p, ǫ∗)|Jµ
e.m.|kq, kq̄〉|2c =

[

−i
4g2

s

3

∫

d4k

(2π)4
1

k2 + i0
· 1

(k + kq − p)2 − m2 + i0
· p−

−2k− + i0

]

·〈γ(p, ǫ∗)|Jµ
e.m.|kq, kq̄〉|1a + O(x0

0), (4.1)

where we omitted irrelevant factors. The eikonal propagator 1/(−2k− + i0) comes from

the quark propagator from the anti-quark after emitting the gluon. This suggests that we

can replace the anti-quark line with a suitable gauge link. However if we take the gauge

link along the light-cone direction, it will produce a light-cone singularity in the integration

over k− as indicated above. To avoid this we can take the gauge link along non light-cone

direction.

For our purpose we consider the following time-ordered product of gauge links with

quark fields:

Sq(z) =
1

6i
Tr

{

γ−〈0|T
[

V †
v (0,−∞)q(0) q̄(z)Vũ(z,−∞)

]

|0〉
}

,

Sq(q) =

∫

d4ze−ix·qSq(x), (4.2)

with qµ = (xP+,−p−, 0, 0). Without the gauge links, it is just a quark propagator. We

first fix the vector v with v+ >> v− as discussed above. The gauge link with ũ is needed

to make Sq(q) gauge invariant. The direction of ũ will be give later. At tree-level we have

Sq(q) =
1

6i
Tr

[

iγ−(γ · q + m)

q2 − m2

]

=
1

q+
. (4.3)

At one-loop there are corrections from diagrams given in figure 7. The dominant

contribution from figure 7c is proportional to the factor in [· · ·] in eq. (4.1) if the eikonal

propagator 1/(−2k− + i0) is replaced with 1/(−2v ·k + i0). Hence it will produce the same

ln2 x as that in the form factor from figure 2c. However, there are contributions involved
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(a)v
~u

(b) () (d)

(e) (f)
Figure 7: One-loop correction of Sq.

with interactions only between gauge links. They are those from figure 7d. Fig 7e and

figure 7f. If we take the direction ũ as ũµ = (0, 0, ũ1, ũ2), the contribution from figure 7d

can be eliminated because of ũ · v = 0. The other two can be subtracted with expectation

value of gauge links. We define the following jet factor as:

Ĵ(x, ζγ , Q, µ) =
q+

6i

∫

d4ze−iq·z
Tr

{

γ−〈0|T
[

V †
v (0,−∞)q(0) q̄(z)Vũ(z,−∞)

]

|0〉
}

Tr〈0|T
[

V †
v (0,−∞)Vũ(0,−∞)

]

|0〉
,

qµ = (xP+,−p−, 0, 0), Q2 = 2P+p−, ζ2
γ =

2v+(p−)2

v−
, (4.4)

with the denominator the contribution from figure 7e and figure 7f are subtracted. The

tree-level contribution to Ĵ is 1. The one-loop contributions are then from figure 7a, figure

7b and figure 7c. They are

Ĵ(x, ζγ , Q, µ)|7a = −αs

3π

[

ln

(

µ2

−q2

)

+ 1

]

, (4.5)

Ĵ(x, ζγ , Q, µ)|7b =
αs

3πq+

[

ln

(

µ2

−q2

)

+ 2

]

,

Ĵ(x, ζγ , Q, µ)|7c =
αs

3π

[

ln

(

µ2

−q2

)

+ 2 + ln
ζ2
γ

xQ2
− ln2

ζ2
γ

xQ2
− π2 − 4

]

+ O(ζ̂−1
γ ).

At the order we consider Ĵ does not depend on ũ2. We note that the ln2 x term from figure

7c is exactly that from figure 2c contributing to the form factor as expected. With the

above result one can derive the following evolution equations which will be useful for our

resummation:

∂

∂ ln µ2
Ĵ(x, ζγ , Q, µ) =

αs(µ)

3π
Ĵ(x, ζγ , Q, µ),

∂

∂ ln ζ2
γ

Ĵ(x, ζγ , Q, µ) =
αs(µ)

3π

(

−2 ln
ζ2
γ

xQ2
+ 1

)

Ĵ(x, ζγ , Q, µ). (4.6)

With NLCWF and the jet factor we can write a factorized form for the form factor:

F (Q) ∼
∫ 1

0
dx

[

1

x
φ̃+(x, ζ, µ)Ĵ(x, ζγ , Q, µ)H̃(x, ζ, ζγ , Q, µ) + (x → 1 − x)

]

, (4.7)
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and H̃(x) does not contain ln2 x explicitly. The leading term H̃ is one in the above. With

our NLCWF we have the convolutions corresponding to that with LCWF in eq. (2.16),

subtracted with the corresponding contributions from the form factor:

Q2F (Q2)|2c −
∫ 1

0

dx

x
φ̃(x, ζ)|3c+4f =

2αs

3πx0
φ0

[

1

x̄0

(

−1

2
ln2 x0 + ln x0 ln

Q2

ζ2

+2Li2(x0) −
π2

3

)

− 1

2
ln

ζ2x̄2
0

Q2
− 2 + x0

2x̄0
ln x0 +

π2

6
− 1

]

,

Q2F (Q2)|2b −
∫ 1

0

dx

x
φ̃(x, ζ)|3b+4c =

2αs

3πx0

[

1

2
ln

Q2

ζ2x0
+

π2

6
− 1

]

, (4.8)

it is clearly that all collinear singularities related to the quark mass are factorized into the

NLCWF.

With the jet factor we have:

H̃(x, ζ, ζγ , Q, µ) = 1 +
2αs(µ)

3π

{

1

x̄

[

ln x ln
Q2

ζ2
+

1

2
ln2 Q2

ζ2
γ

+ ln x ln
Q2

ζ2
γ

]

+

[

ln
Q2

ζ2
+ ln

Q2

µ2
+

1

2
ln

Q2

ζ2
γ

]

+
1

x̄

(

−xπ2

3
+ 2Li2(x)

)

− 2 +
π2

2
− ln x̄

−3x

2x̄
ln x − x

2x̄
ln2 xQ2

ζ2
γ

− x

x̄
ln x

(

ln
Q2

µ2
− 1 +

1

2
ln x

)}

+ O(α2
s), (4.9)

as expected, for fixed ζ, ζγ and µ there are no terms like ln2 x. Also there are no terms

like ln x without involving other log’s.

5. Resummation

If we take φ̃+ as a nonperturbative object entirely, the resummation is really simple, in

which we chose scales like µ, ζ and ζγ so that there is no large log’s. E.g., we can take

those scales and obtain Ĥ which contains no large log’s:

µ2 = Q2 = ζ2 = ζ2
γ ,

H̃(x,Q,Q,Q,Q) = 1 +
2αs(µ)

3π

{

1

x̄

(

−xπ2

3
+ 2Li2(x)

)

− 2 +
π2

2
− ln x̄ (5.1)

−3x

2x̄
ln x − x

2x̄
ln2 x − x

x̄
ln x̄

(

−1 +
1

2
ln x̄

)}

+ O(α2
s),

and for the jet factor we use the evolution equation of ζγ to express Ĵ at ζγ = Q with that

at ζγ =
√

xQ:

Ĵ(x,Q,Q,Q) = exp

{

−αs(Q)

3π

[

ln2 x + ln x
]

}

Ĵ(x,
√

xQ,Q,Q),

Ĵ(x,
√

xQ,Q,Q) = 1 +
αs

3π

[

− ln x − 1 − π2
]

, (5.2)
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it should be noted that Ĵ(x,
√

xQ,Q,Q) has no ln2 x term. Only the single log ln x remains.

Then for the form factor we have:

F (Q) ∼
∫ 1

0
dx

[

1

x
φ̃+(x,Q)Ĵ(x,

√
xQ,Q,Q)H̃(x,Q,Q,Q,Q) exp

{

−αs(Q)

3π

[

ln2 x + lnx
]

}

+(x → 1 − x)

]

. (5.3)

Taking H̃Ĵ as a perturbative function, it does not contain ln2 x. The terms with ln2 x are

resummedin the exponential, but one needs the information of φ̃ to make predictions.

With our results one can indeed resum ln2 x in the factorization formula with LCWF.

One can use the relation between φ and φ̃ to write another factorization formula for the

form factor:

F (Q) ∼
∫ 1

0
dx

[

1

x
φ(x, µ)Ĉ(x, ζ, µ)Ĵ(x, ζγ , Q, µ)Ĥ(x, ζ, ζγ , Q, µ) + (x → 1 − x)

]

, (5.4)

and take Ĉ, Ĵ and Ĥ as perturbative functions. H̃ is the same as Ĥ at one-loop level. If

we expand the product ĈĴH̃, we return to the standard collinear factorization discussed

in section 2. With the product its each part has a clear meaning. The ζ-dependence in Ĉ

will control the behavior of x → 0 in LCWF, while the ζγ dependence in Ĵ controls that

in the form factor. The evolution equations of Ĉ can be obtained from results in section

3. They are:

∂

∂ ln µ2
Ĉ(x, ζ, µ) = −2αs(µ)

3π

(

1

x̄
ln x + 1

)

Ĉ(x, ζ, µ),

∂

∂ ln ζ2
Ĉ(x, ζ, µ) =

2αs(µ)

3π

(

1

x̄
ln x + 1

)

Ĉ(x, ζ, µ). (5.5)

For the resummation we first chose a scale µ1 in the factorization formula and use the

µ-evolution to express Ĉ(x, ζ, µ1) with Ĉ(x, ζ, µ):

Ĉ(x, ζ, µ1) = exp

{

− 8

3β0
ln

αs(µ)

αs(µ1)

(

ln x

x̄
+ 1

)}

Ĉ(x, ζ, µ), (5.6)

where we have used the one-loop αs-running:

αs(µ) =
4π

β0

(

ln
µ2

Λ2

)−1

, β0 = 11 − 2

3
nf . (5.7)

We then use the ζ-evolution to express Ĉ(x, ζ, µ) with Ĉ(x, ζ0, µ):

Ĉ(x, ζ, µ) = exp

{

2αs(µ)

3π

(

ln x

x̄
+ 1

)

ln
ζ2

ζ2
0

}

Ĉ(x, ζ0, µ), (5.8)

now we take ζ2
0 = µ2/x, so that Ĉ(x, ζ0, µ) does not have any log’s:

Ĉ(x, µ/
√

x, µ) = 1 − αs(µ)

3π

[

1

x̄

(

2Li2(x) − π2

3

)

− 1

2
ln x̄ +

π2

3
+ 2

]

+ O(α2
s). (5.9)
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With these steps, all log terms in Ĉ are resumed:

Ĉ(x, ζ, µ1) = exp

{

−
[

8

3β0
ln

αs(µ)

αs(µ1)
− 2αs(µ)

3π
ln

xζ2

µ2

](

ln x

x̄
+ 1

)}

Ĉ(x, µ/
√

x, µ).

(5.10)

Now we have the freedom to chose µ so that the exponential does not go to ∞ when x goes

to 0. We can take µ fixed by:

αs(µ) = xαs(µ1), ln
µ2

Λ2
=

1

x
ln

µ2
1

Λ2
, (5.11)

and

Ĉ(x, ζ, µ1) = exp

{

− 8

3β0

[

ln x− β0

4π
xαs(µ1) ln x−x

αs(µ1)

αs(ζ)
+1

] (

lnx

x̄
+1

)}

Ĉ(x, µ/
√

x, µ).

(5.12)

For x → 0 we have now:

Ĉ(x, ζ, µ1) ∼ exp

{

− 8

3β0
ln2 x

}

, (5.13)

and it goes to zero fast than any positive power of x.

By taking the scales

µ2
1 = Q2 = ζ2 = ζ2

γ , (5.14)

and using the ζγ-evolution to express Ĵ at ζ2
γ = Q2 with Ĵ at ζ2

γ = xQ2, we obtain our

resummed form for the form factor:

F (Q) ∼
∫ 1

0
dx

[

1

x
φ(x,Q)Ĵ(x,

√
xQ,Q,Q)Ĥ(x,Q,Q,Q,Q)Ĉ(x, µ/

√
x, µ) exp {−S(x,Q)}

+(x → 1 − x)

]

,

S(x,Q) =
8

3β0

[

ln x − β0

4π
xαs(Q) ln x − x + 1

] (

ln x

x̄
+ 1

)

+
αs(Q)

3π

[

ln2 x + ln x
]

,

≈
(

8

3β0
+

αs(Q)

3π

)

ln2 x, for x → 0, (5.15)

in the above the product ĈĤĴ does not contain any log’s, except Ĵ has a single log ln x.

All other logs, like ln2 x,etc., are resummedin S. Since we only used one-loop evolutions,

for consistence we should neglect higher orders in αs in the product. Therefore, we have

the one-loop resummedform factor:

F (Q) =
1

3
√

2Q2

∫ 1

0
dx

[

1

x
φ(x,Q) exp {−S(x,Q)} + (x → 1 − x)

]

,

=

√
2

3Q2

∫ 1

0
dx

1

x
φ(x,Q) exp {−S(x,Q)} . (5.16)

This form can be used if one can get φ(x,Q) easily at the large scale Q. If one only knows

the wave function at lower scale, but does not want to solve the evolution equation for the
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wave function to get it at a higher scale, one can first evolute everything at a lower scale

µ0 where the wave function is known or modeled, then to a higher scale µ1 and perform

the resummation. We get in this case:

F (Q) =

√
2

3Q2

∫ 1

0
dx

1

x
φ(x, µ0) exp

{

−S(x,Q) − 8

3β0
ln

αs(Q)

αs(µ0)

(

ln x +
3

2

)}

, (5.17)

where we have used:

∂
(

ĈĤĴ
)

∂ ln µ2
= −2αs(µ)

3π

(

ln x +
3

2

)

(

ĈĤĴ
)

. (5.18)

6. Numerical results and comparison with experiment

We will use our resummation formula in eq. (5.17) and eq. (5.18) to give our numerical

results. In our formulas the nonperturbative input is the LCWF. The LCWF has the

asymptotic form if µ goes to ∞:

φ(x, µ) = 6x(1 − x)fπ + · · · , (6.1)

where · · · stand for terms which are zero in the limit µ → ∞. The LCWF can be expanded

with Gegenbauer polynomials [1]. A model for φ has been proposed by truncating the

expansion [18]:

φ(x, µ) = 6fπx(1 − x)
(

1 + φ2(µ)C
3/2
2 (2x − 1)

)

, (6.2)

where φ2(µ0) is determined by QCD sum-rule method at µ0 = 1GeV [18]:

φ2(µ0 = 1GeV) = 0.44. (6.3)

We will use these two types of LCWF to give our numerical results. We will use eq. (5.16)

with the asymptotic form of φ to make our numerical predictions. For LCWF given in

eq. (6.2) we use eq. (5.17). We take the Λ-parameter as Λ = 237MeV. Our numerical

results do not strongly depend on the value of Λ. There is only a little change if we change

Λ from 100MeV to 300MeV.

Our numerical results are given in figure 8, where experimental results from CLEO

in [10] are also given. From figure 8 we see that with the two types of LCWF the re-

summation has significant effects. The resummation can reduce the form factor predicted

without the resummation at the level of 40% or more. Using the LCWF given in eq. (6.2)

with our resummation the experimental results can be well described for Q2 ≥ 3GeV2.

7. Conclusion

In the collinear factorization the form factor of the transition γ∗π0 → γ can be written as

a convolution of a hard part and LCWF. The hard part contains double log terms as ln2 x

at one-loop level and is expected to have terms ln2n x at order of αn
s . A resummation of

these terms with a simple exponentiation can not be done because it results in divergent
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Figure 8: Numerical results with experimental data. The curve A and curve As are obtained by

using the asymptotic form without and with the resummation, respectively. The curve B and curve

Bs are obtained by using the LCWF in eq. (6.2) without and with the resummation, respectively.

The experimental data are taken from the second reference in [10].

results. In this work we have studied the resummation of these ln2 x terms. With a small

but finite quark mass as the regulator of collinear singularities, we have found that the ln2 x

terms come partly from the light-cone wave function and partly from the form factor, as

discussed in section 2. To handel these terms, we first introduce a nonstandard light-cone

wave function with the gauge links off the light-cone direction. This introduces an extra

scale in the NLCWF beside the renormalization scale µ. The deviation from the light-cone

direction will regularize light-cone singularities in each contributions. This fact leads to

that the NLCWF will not deliver any term with ln2 x to the hard part, if one uses the

NLCWF to perform the factorization. As the next, we introduce a jet factor to factorize

the ln2 x term in the form factor. The jet factor also contains an extra scale beside µ. This

extra scale controls the x-behavior of the jet factor. Our re-factorized formula for the form

factor is a convolution with the NLCWF, the jet factor and a hard part. The hard part

does not contain terms with ln2 x.

We have found that there is an interesting relation between the LCWF and the in-

troduced NLCWF. The relation can be determined with perturbative QCD and is given

at one-loop level in this work. With this relation we are able to show that the ln2 x can

be resumed and the nonperturbative object in the resummed formula is only the LCWF.

With the knowledge of LCWF’s we are able to get numerical predictions. In performing

the resummation of the double log we have used the concept of QCD factorization and
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worked out every quantity explicitly at one-loop level. It is possible to extend our work to

the resummation of the remaining single log terms and beyond one-loop level.

Our numerical results show that the effect of the resummation is significant. There is a

difference at the level of 40% or more between the predicted form factors with and without

the resummation. In comparison with experiment we find that the numerical predictions

by using the LCWF in eq. (6.2) with the resummation are consistent with the experimental

data.
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